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Abstract
We evaluated the adoptive transfer of DCs on Leishmania (L.) mexicana-infected neonatal BALB/c
mice. DCs were isolated and purified from the spleens of the following donor groups: a) Adult
BALB/c mice infected during adulthood with L. (L) mexicana; b) Adult BALB/c mice infected during
neonatal life; c) Healthy neonatal BALB/c mice; d) Healthy adult BALB/c mice. A neonatal model of
infection, generated after inoculation with 5 × 105 promastigotes of L. (L) mexicana, was used as the
infection control group. Sixteen hours after intraperitoneal transfer of DCs (1 × 103, 1 × 105, or 1
× 106 cells/ml), neonatal recipient BALB/c mice were infected. The adoptive transfer of DCs
diminished disease progression in neonatal mice. This reduction depends on the quantity and
provenance of transferred DCs, since the effect was more evident with high numbers of DCs from
adult mice infected during adulthood and healthy neonatal mice. Protection was significantly
reduced in animals receiving DCs from healthy adult mice but it was absent in mice receiving DCs
from adult mice infected during neonatal life. These results suggest that genetic susceptibility to
Leishmania infection can be modified during neonatal life, and that the period of life when antigens
are encountered is crucial in influencing the capacity of DCs to induce resistance or tolerance.

Background
Medawar et al. [1] showed almost half a century ago that
rodents injected at birth with splenocytes from genetically
different donors could accept transplants from that donor
as an adult. These milestone experiments guided the
notion that the introduction of antigens during neonatal
life leads to tolerance and that the immune system func-
tions by making a distinction between self and nonself.
For some years, Matzinger et al. have persevered on the
hypothesis that tolerance is not an intrinsic property of
the newborn immune system [2,3]. For example, many

studies have shown that neonatal exposure to antigen
may prime T cells and induce both Th1 and Th2 cells [4-
7]. Moreover, Adkins et al. have demonstrated that
although neonates develop compartmentally distinct pri-
mary responses to antigen immunization (mixed Th1/
Th2 in lymph nodes and Th2 in spleen), after rechallenge
the elicited secondary response is always of the Th2 type
[7,8]. They have also proved that even in the lymph
nodes, the Th2 function persists for a prolonged period
after a single immunization, and that animals initially
immunized as neonates are impaired in their capacity to
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develop the expected Th1 memory effector function
observed in adults [9]. The biased immunogenic neonatal
immunity may be attributable to factors associated with
antigen presentation such as type of antigen-presenting
cell, accompanying adjuvant and the nature, concentra-
tion and in vivo availability of the antigen [5,10-13]. Rest-
ing T cells need two signals to be activated; signal 1 from
TCR binding to MHC/peptide and signal 2 (co-stimula-
tion) from a professional phagocyte, such as a dendritic
cell or a macrophage. Tolerance is associated to a lack of
co-stimulation that usually occurs when antigen is
encounter by a non-professional phagocyte, or by profes-
sional phagocytes in a non-APC tissue (lymphoid tissue,
skin, etc)[14]. In this study, we have evaluated the effect
of adoptive transfer of DCs from adult and neonatal mice
infected with L. (L.) mexicana, and from healthy adult and
neonatal mice. As in the L. major mouse model, we have
shown that infection with L. (L.) mexicana strain MHOM/
BZ/82/BEL21, generates a Th1 response associated to pro-
tective immunity in C57BL/6 mice, and a Th2 response
related to non-healing disease in BALB/6 mice [15].

Leishmaniasis is an excellent model to study the extremes
of host/parasite relationships, particularly the diversity of
the immune response associated to the genetic back-
ground of the host. In addition, mice can reproduce the
distinct clinical forms observed in humans [16,17]. These
models have been particularly important to show that
skin-derived DCs including Langerhans cells play an
important role in cutaneous leishmaniasis, where they
can transport Leishmania antigens to the lymph nodes and

induce specific immune responses [18-24]. Moll et al.
have also shown that Langerhans cells may act as reser-
voirs sustaining parasite-specific stimulation of T memory
cells, thus protecting animals from reinfection [25].

Results and Discussion
Establishment of a L. (L.) mexicana infection model in 
neonatal BALB/c mice
The progress of L. (L.) mexicana infection in neonatal
BALB/c mice, after the inoculation with 5 × 104, 1 × 105, 2
× 105 or 5 × 105 promastigotes was determined by meas-
uring the footpad thickness during 6 weeks. All 4 experi-
mental groups developed lesions. Mice that received 1 ×
105, 2 × 105 and 5 × 105 promastigotes respectively,
showed a significant increase (p ≤ 0.05) on footpad thick-
ness starting from the second week, reaching a maximal
value on the sixth week of evaluation (Fig. 1A). This
increase in footpad thickness was much greater (p ≤ 0.05)
in the group inoculated with 5 × 105 promastigotes, with
lesions appearing from the first week (Fig. 1A). Moreover,
this experimental group presented a similar evolution to
that observed in L. (L.) mexicana-infected adult BALB/c
mice inoculated with 1 × 106 promastigotes (Fig. 1B). The
statistical analysis using a Wilcoxon matched-pairs
signed-ranks test of the percentage increase from the start-
ing footpad thickness in both neonatal and adult BALB/c
mice infected with 5 × 105 and 1 × 106 promastigotes,
respectively, showed a significant (p ≤ 0.05) two-tailed
value and a very significant Spearman correlation (r =
1.000, p = 0.0014). The starting footpad thickness in neo-

Progression of L. (L.) mexicana infection in neonatal BALB/c miceFigure 1
Progression of L. (L.) mexicana infection in neonatal BALB/c mice. A. Footpad thickness of adult mice infected with 1 × 106 pro-
mastigotes (■), non-infected mice (❍), neonatal mice infected with 5 × 104 promastigotes (�), neonatal mice infected with 1 × 
105 promastigotes (▲), neonatal mice infected with 2 × 105 promastigotes (�) and neonatal mice infected with 5 × 105 promas-
tigotes (●). B. Percentage increase from the starting footpad thickness in both neonatal (�) and (■) adult BALB/c mice 
infected with 5 × 105 and 1 × 106 promastigotes, respectively.
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natal and adult BALB/c mice was 1.67 mm and 1.85 mm,
respectively.

We used 5 × 105 promastigotes as the optimal concentra-
tion for L. (L.) mexicana infection in all the subsequent
experiments including the infection control group. This
neonatal murine model of L. (L.) mexicana infection used
half the numbers of promastigotes previously described to
infect adult BALB/c mice [16]. A significant Spearman cor-
relation attested that our neonatal model was comparable
to the adult model of infection. Although infected neona-
tal mice have a statistically similar clinical outcome that
infected adult mice, we ignore whether these mice have
similar level of infection and therefore similar concentra-
tions of antigens carried over by the transferred DCs, how-
ever, looking at the present results one can speculate that
DCs from mice infected during neonatal life induced tol-
erance probably due to a high parasite burden, and not a
lack of adjuvancity since DCs from healthy neonatal mice
were able to partially protect against Leishmania infection.
Other studies have shown a similar pattern of Th2-biased
immune response in other models of neonatal infection
[7,11]. We also observed that even after the inoculation of
considerable numbers of parasites, neonatal mice differed
significantly from adult mice in their percentage incre-
ment from the starting footpad thickness, suggesting a
functional impairment of the primary immune response.
This may be explained, first by the fact that in BALB/c mice
carry a point mutation in the Nramp1 (natural-resistance-
associated macrophage protein) gene that allows the
mRNA degradation of macrophage activation genes,
increasing susceptibility to Leishmania infection [26]. Sus-
ceptibility associated with the dominant expression of the
costimulatory molecule CD86 (B7-2) and the subsequent
generation of the Th2-mediated response [27-31]. Sec-
ond, the proof that murine naïve neonatal T cells, unlike
adult T cells, express a Th2 phenotype and are highly defi-
cient in Th1 functions [32,33].

Morphological and immunophenotypic characterization 
of murine splenic dendritic cells
DCs obtained by our purification method showed charac-
teristic dendritic cell morphology, and a 97% purity as
determined by CD11c immunostaining and flow cytome-
try. A minor fraction of about 3.5 % expressed CD3 and
NK1.1 (Fig. 2). The expression of CD11c, MHC-II and
CD86 molecules was detected by immunocytochemistry,
thus demonstrating that these cells showed characteristics
of functionally mature DCs.

Splenic DCs were isolated for our adoptive transfer exper-
iments since they are mobile antigen-presenting cells that
migrate to peripheral lymph organs where they stimulate
naive T cells, thus initiating primary T cell responses [34-
36]. Further, splenic DCs have been isolated by standard-

ized procedures based on the high expression of CD11c
and the lack of CD205 [37].

Progression of the infection in neonatal recipient BALB/c 
mice after adoptive transfer of dendritic cells from the 
distinct experimental groups
The adoptive transfer of 1 × 103, 1 × 105 or 1 × 106 DCs
from adult BALB/c mice infected during adulthood with L.
(L) mexicana on neonatal recipient mice modified the
course of infection, showing a delayed lesion growth from
the second week onward (Fig. 3) as compared with the
infection control group. This reduction in footpad thick-
ness was dependent of DC numbers, since at the highest
concentration of 1 × 106, lesions were smaller than those
observed with 1 × 103 and 1 × 105 DCs from the fifth week
onward (Fig. 3). At the seventh week of infection, lesion
size decreased by 40% after the adoptive transfer of 1 ×
106 DCs, whereas in animals inoculated with 1 × 105 and
1 × 103 DCs the decrease was of 33% and 22%, respec-
tively. In contrast, the adoptive transfer of 1 × 105or 1 ×
106 DCs from adult BALB/c mice infected during neonatal
life with L. (L) mexicana fail to modify the course of infec-
tion of neonatal recipient BALB/c mice as compared with
infection control animals (Fig. 4). However, those mice
receiving 1 × 106 DCs showed a significant reduction in
lesion growth (p ≤ 0.05) on weeks 2, 3 and 4. This effect
disappeared from the fifth week onwards (Fig. 4).

Frequency distributions of purified dendritic cells labelled CD11c-FITC showing 97.17% purity (right), and FITC-iso-type control (IgG1) (left)Figure 2
Frequency distributions of purified dendritic cells labelled 
CD11c-FITC showing 97.17% purity (right), and FITC-iso-
type control (IgG1) (left). The information shown is from a 
single cell isolation procedure, representative of various sep-
arate experiments.
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Moreover, the adoptive transfer of 1 × 105 or 1 × 106 DCs
from healthy adult BALB/c mice modified the course of
infection in neonatal recipient mice, showing a delayed
and significant decrease (p ≤ 0.05) in lesion growth from
the second week of infection (Fig. 5). This reduction in
footpad thickness was dependent on DC numbers, since
at 1 × 106 lesions were significantly (p ≤ 0.05) smaller
than those observed in mice transferred with 1 × 105 DCs,
which also initiated their lesions on the third week (Fig.
5). At the seventh week of infection, lesion size decreased
by 30% after the adoptive transfer of 1 × 106 DCs and by
10% in mice receiving 1 × 105 DCs. similarly, the adoptive
transfer of 1 × 103 or 1 × 105 DCs from healthy neonatal
BALB/c mice modified the course of infection of neonatal
recipient mice, showing a delayed and significant decrease
(p ≤ 0.05) in lesion growth from the second week of infec-
tion. This reduction in footpad thickness was very similar
in both tested concentrations (Fig. 6). At the seventh week
of infection, lesion size decreased by 35% in both groups.

Disease progression was substantially decreased after
transferring cells from adult BALB/c mice infected during
adulthood with L. (L) mexicana, healthy adult BALB/c

mice and healthy neonatal BALB/c mice. The reduction in
these 3 groups was statistically significant (p ≤ 0.05) as
compared with the infection control group. This reduc-
tion in footpad thickness was absent or considerably
diminished in mice receiving DCs from adult BALB/c
mice infected during neonatal life with L. (L) mexicana
(Fig. 7).

Our results showed that the preceding intraperitoneal
adoptive transfer of DCs diminished the progression of L.
(L.) mexicana infection in neonatal BALB/c recipient mice.
These results contrast with those of Moll and Berberich
[38] showing that only intravenous administration of
antigen-pulsed Langerhans cells, but not intradermal or
intraperitoneal inoculation, induced resistance against
Leishmania infection. In this study, the observed protec-
tion depends on the quantity and provenance of the trans-
ferred DCs, since the effect was more evident with high
cellular numbers of DCs from adult BALB/c mice infected
during adulthood and healthy neonatal mice, where
lesions were about 40% smaller than in the infection con-
trol group. DCs from these two groups have the intrinsic
capacity to induce protective or resistant immune
responses very early in life. That neonatal DCs appear to
be more protective, on a per cell basis, than adults DCs is

Progression of infection in neonatal recipient BALB/c mice after adoptive transfer of DCs from adult BALB/c mice infected during adulthood with L. (L) mexicanaFigure 3
Progression of infection in neonatal recipient BALB/c mice 
after adoptive transfer of DCs from adult BALB/c mice 
infected during adulthood with L. (L) mexicana. Footpad thick-
ness of neonatal mice infected with 5 × 105 promastigotes 
(■); neonatal mice transferred with 1 × 106 (❍;), 1 × 105 (�) 
and 1 × 103 (�) DCs and subsequently infected with 5 × 105 

promastigotes.

Progression of the infection in neonatal recipient BALB/c mice after adoptive transfer of DCs from adult BALB/c mice infected during neonatal life with L. (L) mexicanaFigure 4
Progression of the infection in neonatal recipient BALB/c 
mice after adoptive transfer of DCs from adult BALB/c mice 
infected during neonatal life with L. (L) mexicana. Footpad 
thickness of neonatal mice infected with 5 × 105 promastig-
otes (■); neonatal mice transferred with 1 × 106 (❍) and 1 × 
105 (�) DCs and subsequently infected with 5 × 105 promas-
tigotes.
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a very striking result since only Dadaglio et al.[39] have
shown that neonatal DCs are as effective as adult DCs in
expressing MHC and costimulatory molecules; taking-up,
processing and presenting antigens to T cells inducing CTL
responses in vivo. Others have shown that neonatal DCs
are not fully functional [40,41]. Also, animals receiving
DCs from healthy adult mice showed a slightly but signif-
icantly reduced protection from that observed with DCs
from adult mice infected during adulthood and healthy
neonatal mice. Various studies have shown that epider-
mal DCs in aged skin are reduced significantly compared
with young skin in mice and humans [42-48]. This cellu-
lar reduction may be the consequence of a decreased pro-
duction in the bone marrow of DC progenitors or
alternatively, these stem cells may be less responsive to
cytokine and chemokine signals required for their homing
to the skin [49-51]. Our results favor the latter hypothesis,
since the same numbers of transferred DCs from healthy
neonatal or adult mice induced a somewhat different dis-
ease outcome. More notable was the observed absence of
a protective effect in mice receiving DCs from adult BALB/
c mice infected with L. (L) mexicana during neonatal life.
This result confirmed recent studies by Adkins et al. show-
ing that animals initially immunized as neonates are una-

ble to develop the expected Th1 memory effector function
observed in adults [9]. These investigators proposed that
in neonates, the spleen is the primary site of tolerance
induction to self-antigens whereas the lymph nodes are
the sites of immune responsiveness to foreign antigens.
The initial and transitory protection observed at the
greatest concentration of DCs from adult mice infected
during neonatal period, suggests impairment in their
accessory functions specifically in those associated with
signal 2 and signal 3. Signal 2 comprises co-stimulatory
factors essential for the clonal expansion of T cells and sig-
nal 3 involves in situ properties of DCs such as tissue
interaction and migration where cytokines, chemokines
and extracellular matrix components are crucial [36].

Conclusions
Our results show that tolerizing DCs from animals ini-
tially immunized as neonates play a key role in the
attenuation of Th1 responses. The present results may
have a considerable epidemiological impact on leishma-
niasis, where infection at early stages of life may impose a
tolerogenic state that favors the development of visceral or
diffuse cutaneous leishmaniasis, both characterized by
Th2-type responses.

Progression of the infection in neonatal recipient BALB/c mice after adoptive transfer of DCs from healthy adult BALB/c miceFigure 5
Progression of the infection in neonatal recipient BALB/c 
mice after adoptive transfer of DCs from healthy adult BALB/
c mice. Footpad thickness of neonatal mice infected with 5 × 
105 promastigotes (■); neonatal mice transferred with 1 × 
105 (❍) and 1 × 106 (�) DCs and subsequently infected with 
5 × 105 promastigotes.

Progression of the infection in neonatal recipient BALB/c mice after adoptive transfer of DCs from healthy neonatal BALB/c miceFigure 6
Progression of the infection in neonatal recipient BALB/c 
mice after adoptive transfer of DCs from healthy neonatal 
BALB/c mice. Footpad thickness of neonatal mice infected 
with 5 × 105 promastigotes (■); neonatal mice transferred 
with 1 × 105 (�) and 1 × 103 ( ) DCs and subsequently 
infected with 5 × 105 promastigotes.
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In this study, we have shown that intraperitoneal adoptive
transfer of splenic DCs is able to surpass the genetic bias
of the mice, allowing the development of an immune
response that modifies the progression of L. (L.) mexicana
infection.

Methods
Animals
Adult (6 weeks) and neonatal (about 24 hour newborn)
female BALB/c mice (Taconic, Germantown, NY, U.S.A.)
were raised in the Animal House of the Instituto de Bio-
medicina, under appropriate conditions of temperature,
water and feeding.

Specific Antibodies
The following rat monoclonal antibodies were used to
isolate and characterize dendritic cells: CD19 (B cells,
clone IBL-2), MOMA-2 (Macrophages/Monocytes),
CD45R (B and NK cells; clone RA3-6B2), CD3 (T cells;
clone KT3), CD11c (dendritic cells and other leukocytes,
clone N418), CD19 (clone 6D5) conjugated to phycoeri-
trine (PE), NK1.1 (clone PK136) conjugated to PE,
Macrophages-Monocytes (MOMA-2) conjugated to fluo-

rescein isothiocyanate (FITC), CD3 (clone KT3) conju-
gated to FITC. All were purchased from Serotec Ltd.
(Oxford, United Kingdom) except CD205 (dendritic cells,
clone NLDC-145, DEC205) donated by Georg Kraal, Vrije
Universiteit, Amsterdam, The Netherlands; I-Ad (MHC-II,
clone AMS-32.1) and CD86 (B7.2, clone GL1) purchased
from BD Pharmigen (San Diego, USA).

Parasite culture and isolation of L. (L.) mexicana 
promastigotes
Amastigotes of Leishmania (Leishmania) mexicana
(MHOM/BZ/82/BEL21) were extracted from footpad
nodules of hamsters infected a month earlier with 1 × 106

amastigotes. The nodules were aseptically dissected out
and washed in phosphate-buffered saline (PBS, pH 7.4)
with 100 U/ml penicillin and 100 µg/ml streptomycin,
and finely cut and ground in a Petri dish containing cold
PBS. The suspension was filtered through a sterile sieve to
remove large debris. These parasites were cultured on
blood agar base (Sigma-Aldrich, St. Louis, U.S.A.) at room
temperature for 7 days (the stationary growth phase) to
obtain infective promastigotes. For an enriched popula-
tion of parasites, free of erythrocytes and cellular debris,
100 µl of that sample were cultured in 2 ml Schneider's
insect cell culture medium (Sigma-Aldrich, St. Louis,
U.S.A.) for one week at room temperature. Promastigotes
were isolated after 3 washes with sterile PBS and
centrifugation at 1000 g at 4°C for 15 min. Pellets were
resuspended in 1 ml of sterile PBS. Viable parasites were
counted by trypan blue exclusion. Parasite concentration
was adjusted to 5 × 104, 1 × 105, 2 × 105 and 5 × 105 per µl
to be used in the different experimental groups.

Experimental infection with promastigotes of L. (L.) 
mexicana
A similar pattern of L. (L.) mexicana infection to that
established in adult mice [52] was determined in neonatal
BALB/c mice. Neonatal BALB/c mice (n = 12) were inocu-
lated subcutaneouslly into the left hind footpad with 5 ×
104, 1 × 105, 2 × 105, or 5 × 105 promastigotes suspended
in 10 µl sterile PBS, applied with a tuberculin syringe (29-
gauge needle) connected to a stepper repetitive pipette
(Tridak, Danbury, U.S.A.). For comparison, adult BALB/c
mice were infected the standardized optimal parasite load
of 1 × 106 promastigotes of L. (L.) mexicana [52]. The
course of infection was evaluated weekly for 6 weeks,
measuring the experimental left footpad using a dial
gauge caliper (Mituyoto N° 7300, U.S.A.).

Isolation and purification of dendritic cells
DCs from adult and neonatal BALB/c mice were isolated
from the spleen. Under sterile conditions, spleens were
minced on a metallic mesh with RPMI-1640 (Life Tech-
nologies, Rockville, U.S.A.) supplemented with 10% of
decomplemented fetal bovine serum (FBS), 2 mM L-

Progression of the infection in neonatal recipient BALB/c mice after the adoptive transfer of DCs from the different experimental groupsFigure 7
Progression of the infection in neonatal recipient BALB/c 
mice after the adoptive transfer of DCs from the different 
experimental groups. Footpad thickness of neonatal mice 
infected with 5 × 105 promastigotes (■); neonatal mice trans-
ferred with 1 × 106 DCs from adult BALB/c mice infected 
during adulthood ( ), adult BALB/c mice infected during 
neonatal life (❍), healthy adult BALB/c mice (●) and 1 × 105 

CDs from healthy neonatal BALB/c mice (�) and subse-
quently infected with 5 × 105 promastigotes.
Page 6 of 9
(page number not for citation purposes)



Kinetoplastid Biology and Disease 2005, 4:2 http://www.kinetoplastids.com/content/4/1/2
glutamine, 10 mM HEPES, 1 mM sodium pyruvate, 50 µM
2-mercaptoethanol and 100 U/ml penicillin (complete
RPMI-10). The cell suspension was filtered on a nylon
sieve and transferred to 15 ml centrifuge tubes (Corning
Life Sciences, Acton, U.S.A.) and spun at 250 g at 4°C for
10 min. Viable cells were counted by trypan blue exclu-
sion. Cell concentration was adjusted to 1 × 107 cells/ml
in complete RPMI-10 and 8 ml plated in tissue culture
flasks. The flaks were incubated for 2 hr at 37°C in a 5%
CO2 incubator (NuAire, Inc., Plymouth, U.S.A.), allowing
DCs to adhere. Non adherent cells were carefully removed
and placed in sterile 50 ml centrifuge tubes and spun at
250 g, 4°C for 10 min. Adherent cells were covered with
10 ml complete RPMI-10 and incubated as before for 16–
18 hours, allowing DCs to detach. After gently washing
the surface of the flasks with a plugged Pasteur pipette and
complete RPMI-10, pools of the eluted cells were placed
in sterile 15 ml centrifuge tubes and spun at 250 g, 4°C for
10 min. For each tube, the cell pellet was resuspended in
6 ml complete RPMI-10. This volume was carefully lay-
ered over a 3 ml NycoPrep™ density gradient (Nycomed
Pharma AS, Torshov, Norway) and centrifuged at 600 g,
20°C for 20 min. Mononuclear cells were removed from
the interface ring using a Pasteur pipette, transferred to a
sterile 15 ml centrifuge tube and spun down in 10 ml
complete RPMI-10 at 400 g, 20°C for 15 min three times.
The final pellet was resuspended in 1 ml of cold (4°C)
Hanks balanced salt solution supplemented with 10%
decomplemented FBS and 2 mM HEPES. Cells were quan-
tified and viability assessed by trypan blue exclusion.

The final purification stage consisted of an immunomag-
netic negative selection of DCs. The cell suspension
obtained above was incubated under continuous agita-
tion at 4°C for 1 hour, with primary rat anti-mouse mon-
oclonal antibodies recognizing B and T lymphocytes, NK
cells and monocytes/macrophages (1.5 µg/ml antibody
per 1 × 106 cells). After incubation, cells were washed
three times in Hanks centrifuging at 250 g, 4°C for 10
min. The pellet was resuspended in 1 ml cold Hanks in a
sterile 15 ml centrifuge tube and incubated under contin-
uous agitation at 4°C for 1 hour with a secondary sheep
anti-rat IgG polyclonal antibody coupled to magnetic
microspheres (Dynabeads® M-450, Dynal Biotech Inc.,
Lake Success, U.S.A.) at a 7:1 sphere/target ratio. Non-
dendritic magnetic-coated cells were removed by positive
selection in three sequential depletions using a magnetic
gadget (Dynal MPC® Dynal Biotech Inc., Lake Success,
U.S.A.) at 4°C for 6 min.

Characterization of dendritic cells
DC purity was determined by flow cytometry and immu-
nocytochemistry. For flow cytometry, 1 × 105 cells were
suspended in PBS (1% FBS) and incubated with 10 µl pri-
mary monoclonal antibodies directly coupled to PE or

FITC recognizing T and B lymphocytes, NK cells and
monocytes/macrophages. DCs were characterized by an
indirect method using primary monoclonal antibodies to
CD11c and a secondary antibody, hamster anti-rat
IgG1conjugated to FITC (clone MARG1-2, Serotec Ltd.,
Oxford, United Kingdom). The incubations were carried
out in the dark at 4°C for 45 min, followed by 3 washes
and centrifugation at 250 g, 4°C for 10 min. The cell pellet
was resuspended in 500 µl PBS and the percentage of
labeled cells determined in a flow cytometer (FACScan,
Becton Dickinson, Franklin Lakes, U.S.A.). The control
consisted of an antibody of irrelevant specificity conju-
gated to FITC.

For immunocytochemistry, 1 × 105 cells were suspended
in PBS (1% FBS) and spun down at 50 g in a Cytospin
(Shandon Inc., Pittsburg, U.S.A.). Sample slides were
hydrated in PBS, fixed in fresh acetone for 5 min. and
sequentially incubated for 90 min with primary rat mon-
oclonal antibodies to CD11c and CD205, biotinylated
goat anti-rat IgG (50 µg/ml) (Vector Laboratories, Burlin-
game, U.S.A.) for 45 min., and Vectastain® Elite ABC kit
(Vector Laboratories, Burlingame, U.S.A.) at 1:100, 30
min. Five-minute washes with PBS were done between
incubations. The reactions were developed for 3 minutes
in Vector® NovaRed™ substrate. The slides were then
washed and counterstained with methyl green. Omissions
of the primary antibody and incubation with an antibody
of irrelevant specificity at the same protein concentration
were used as controls.

Adoptive transfer of dendritic cells
DCs were isolated from the spleens of the following
donor groups: a) Adult BALB/c mice infected during
adulthood with L. (L.). mexicana (n = 4); b) Adult BALB/c
mice infected during neonatal life with L. (L.). mexicana
(n = 4); c) Healthy neonatal BALB/c mice (n = 4); d)
Healthy adult BALB/c mice (n = 4). The infection control
group consisted of neonatal BALB/c mice infected with 5
× 105 promastigotes of L. (L) mexicana.

DCs from the 4 experimental groups were adjusted to 1 ×
103, 1 × 105, or 1 × 106 cells/ml in sterile PBS for intraperi-
toneal transfer to neonatal recipient BALB/c mice. Cells, at
the mentioned concentrations, were injected in 20 µl vol-
umes using a tuberculin syringe (29-gauge needle)
connected to a stepper repetitive pipette (Tridak, Dan-
bury, U.S.A.). After sixteen hours of adoptive transfer,
neonatal recipient BALB/c mice were infected with 5 × 105

promastigotes of L. (L) mexicana.

Isolation of DCs and adoptive transfer experiments were
done in duplicates.
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Statistical analysis
The results were expressed as mean ± standard error of the
mean (SEM). Each experimental group consisted of 4–5
individuals. Comparisons between groups were made
with Student t test and Welch t test for unpaired samples.
Any value of p ≤ 0.05 was considered significant. All tests
were performed using GraphPad InStat 3.02 (GraphPad
Software, San Diego California USA, http://www.graph
pad.com).
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